IL-25, a member of the IL-17 family, is an important cytokine that promotes the Th helper type 2 (Th2) response in allergic asthma. Due to its high expression in human asthma, its association with eosinophilic airway inflammation and airway hyper-responsiveness in multiple mouse models, and its association with the exacerbation of asthma by rhinovirus, IL-25 represents a key target for therapeutic intervention. However, high affinity neutralizing humanized antibodies cross-reactive to human and mouse IL-25 have not been developed, in part due to the high level of structural conservation between human and mouse IL-25 protein. In order to generate potent neutralizing antibodies against human IL-25, we have utilized our novel transgenic mouse system, AbeoMouse™, which produces an exceptional immune response that breaks tolerance for mouse proteins, and allows for the direct selection of antigen-specific B-cells, paired with single-cell antibody genome cloning, expression and screening. The AbeoMouse™ system provides plasmacytes with a 45-fold increase in antigen-specific surface immunoglobulin (Ig), an accelerated immune response, and rapid identification of lead candidates without hybrids. Using this technology, we have identified novel, potent neutralizing antibodies against IL-25, and we have demonstrated the efficacy of a lead candidate in a mouse model of chronic, IL-25-induced asthma exacerbation. In addition, we have successfully generated and optimized humanized lead candidates with high affinity and potency. The AbeoMouse™ system represents a powerful and rapid platform for generating potent therapeutic antibodies.

Abstract

Development of Potent Neutralizing Therapeutic Antibodies to IL-25 From a Novel Transgenic Mouse System

Thomas Vincent, Crystal Jackson, Jason Girkin, Nathan Bartlett, Yonghua Luo, Rebecca Reese, Javid Aceli, Craig Lakinis, Matthew O’Brien, N. Kirby Alton, and Richard Shimkets

I Abeome Corporation, Athens, GA USA; University of Newcastle, Australia

poster link: www.abeomecorp.com/category/news/

AbeoMouse™ RAPID ANTIBODY DISCOVERY PLATFORM

Triple-transgenic mouse engineered to express IL-4 and the Idigil-25 B-cell receptor proteins, resulting in a hyper immune response and surface antibody expression during all stages of B-cell differentiation.

Therapeutic Antibody Discovery Process

1. Single-cell cloning & rapid discovery of specific, high affinity chimeric monoclonal antibodies
2. Direct Selection of AbeoMouse™ B-Cells and single cell screening
3. Purified Antigen Specific B-Cells
4. Single-cell RT-PCR and Cloning
5. Immunization with Human IL-25 and Single B Cell Cloning

Immunization with Human IL-25 and Single B Cell Cloning

Efficacy in a Rhinovirus Induced Asthma Exacerbation Model

IL-25 is elevated in human patients during rhinovirus (RV) infection, and IL-25 plays a key role in a mouse disease model of asthma exacerbation by RV18 infection. Using this model, we show that Abs against IL-25 treatment suppresses the RV18-induced type-2 immune response, resulting in a reduction of eosinophilic airway inflammation in vivo.

Summary

Using a novel transgenic mouse system, we have shown that we can rapidly obtain chimeric antibodies of high affinity and neutralizing potency against both human and mouse IL-25, without the use of hybrids. B-cell expressing affinity matured anti-IL-25 surface antibodies were directly selected, and recombinant chimeric antibodies were screened for IL-25 binding and neutralization. From our neutralization screen, we identified and characterized three lead mAbs – A0010, A0125, and A0215 – which all showed high affinity by SPR and high potency in cellular assays. Surprisingly, A0125 and its humanized derivatives lost nearly all binding and potency when directed against recombinant IL-25, most likely due to glycosylation at or near the IL-25 epitope. A0215, however, exhibited high affinity and potency against both human and mouse IL-25 derived from human cells. We also show that treatment with A0215 blocks RV-induced exacerbation in a mouse asthma model, providing further evidence that IL-25 is an important role in asthma exacerbation. Finally, we have developed humanized leads based on A0010 that exhibit high affinity and potency against IL-25. We are currently optimizing these leads in an effort to bring a strong candidate anti-IL-25 antibody to the clinic.

Development of Humanized Lead Candidates

For A0010 and A0125, mouse CDRs were grafted into several optimal human framework regions, expressed transiently and tested for affinity and neutralization potency against human and mouse IL-25.

Functional Screening: Neutralization of IL-25 Activity

Cell-based screening of chimeric IL-25 antibodies – Neutralization of IL-25 mediated CXCL1 secretion in HT-29 cells

Anti-IL-25 Antibody Primary Screening

ELISA binding to IL-25 of single B-cell cloned chimeric human IgG4 mAbs from transduced HEK supernatants

Transfection HEK cells and screen for via surface expression

IL-25 Neutralization – IC₅₀

Efficacy in a Rhinovirus Induced Asthma Exacerbation Model